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I. IWI_DD[]CTION

Although from a historical point of view, composite materials have

found practical use for centuries, during the past two decades there has

been a tremendous increase in the use of composite materials in engineering

applications, particularly in aerospace engineering. One of the biggest

attractions of these materials is that one is able to design and

manufacture such materials to sustain a specific type of loading in a most

efficient manner. If properly produced, composites can often achieve a

combination of properties that are far superior to the properties of the

individual constituents acting independently.

It is well known that gas turbine engine structures, particularly

those components directly in the hot gas flow path, are subjected to

extremely severe thermal and mechanical loading that can often lead to

creep enhanced distortion, cracking and i_ cycle fatigue. As the demand

for more efficient propulsion system rises so does the thermal and

mechanical loading. It is unlikely that the current generations of metal

alloys would be suitable candidates for structural components in the future

generations of efficient propulsion systems. Ceramic components are often

thought to be ideal as far as their thermal durability is concerned.

Unfortunately, ceramics do not have adequate tensile strength to sustain a

high level of mechanical loading. In recent years there has been

significant effort in the attempt to incorporate fibrous inclusions within

a ceramic matrix to develop a class of new materials (ceramic composites)

for advanced engineering applications.

The mechanical behavior of ceramic composites under nonlinear, thermal

and dynamic loading is extremely complex and can only be understood if the

observed behavior is interpreted in terms of micromechanical analyses.

Such analyses must take care of the complex interaction of the individual



fibers or bundles of fibers embedded in the three-dimensional ceramic

matrix and must allow for increasing levels of sophistication in terms of

the idealization of the fibers as well as the ceramic matrix. In addition

complex interface behavior and controlled failure of the fiber must be

considered.

This report details progress made during the period of March 1988 to

December 1988 in a five-year program co_nencing in March 1988, towards the

development of a boundary element code designed for the micromechanical

studies of advanced ceramic composites. Additional effort has been made in

generalizing the implementation to allow the program to be applicable to

real problems in the aerospace industry.

The primary goal of the first year has been to develop the boundary

integral formulation for a fully-bonded elastic inclusion within an elastic

matrix, and to implement the formulation in a boundary element program in a

sufficiently general manner as to facilitate implementation of future

development for the remainder of the present program of research.

Significant progress has been achieved during the first year of the

present effort. The analytic and numerical basis for the ceramic composite

program has been developec% This effort included:

.

.

J

4.

the derivation of the boundary integral formulation modified for holes

and inserts,

the derivation of the kernel function for one-dimensional line

integration of holes and inserts,

the implementation for the assembly and solution of inserts, and

the validation and verification runs using the developed computer

code.



The ceraT_ic composite formulation has been implemented in the three-

dimensional boundary element computer code _EST3D'which was developed for

NT_SAby Pratt and Whitney and the State University of NewYork at Buffalo

under contract NAS3-23697. BEST3Dhas been adopted as the base for the

ceramic composite program, so that manyof the enhanced features of this

general purpose boundary element code can be utilized. Someof these

facilities include sophisticated numerical integration, the capability of

local definition of boundary conditions, and the use of quadratic shape

functions for modeling geometry and field variables on the boundary. The

multi-region implementation permits a body to be modeled in substructural

parts; thus dramatically reducing the cost of the analysis. Furthermore,

it allows a body consisting of regions of different ceramic matrices and

inserts to be studied.

In the next section, the existing approaches for the study of the

micromechanical behavior of composites are briefly reviewed. This is

followed by the development of the boundary element formulation for ceramic

composites in Section 3. Section 4 outlines the development of the general

computer program implementation followed by the description of the

program's data input and output in Section 5. Example data and results are

included to demonstrate the convenience in modeling and analyzing

composites using this code. In Section 6, a number of numerical examples

are presented to demonstrate the power of the present implementatior_ This

report is then concluded with a sunmary and plan for future development.



2. _ OF EXISTING _Q_S

A number of techniques of varying degree of sophistication are

presently used to study the micromechanical behavior of composites. In

essence the various micromechanical analyses recognize the inhomogeneous

nature of the composite material, but generally ignore finer details of the

structure of the fiber and matrix to a varying degree. Numerous

approximations are made concerning the packing geometry and response fields

within the body so that mathematical analyses can be performed to relate

the properties and concentration of fibers and matrix to the average

property of the body. A complete bibliography of these methods which are

variously called 'mechanics of materials', 'self-consistent fields',

'variational methods' and 'numerical techniques' are given in Chamis and

Sendecky j (1968).

Although none of the above mentioned work specifically focuses on

ceramic composites (and it appears that very little is available in the

current literature), the overall conclusions derived apply reasonably well

to the present case.

Rational methods based on mechanics of materials have been developed

over the last decade to explain and predict the behavior of composite

systems in terms of their materials make-up. Some of these simple models

have indeed been very effective. For example, a simple model of the fiber

and resin components responding by parallel reactions to imposed thermal or

mechanical loads is generally adequate to describe and predict the

following longitudinal properties of unidirectional composites:

- Longitudinal modulus EL;

- Poisson's ratio, _12;

- Linear thermal expansion coefficient, =L;

- Thermal conductivity, KL.



Primary emphasis in the model has been given to stiffness-limited

structures so that attention has been focused on the longitudinal modulus.

For all practical purposes the contributions of the matrix phase to this

property are often assumed negligible.

The properties perpendicular to the direction of the fibers are not so

simply described nor so readily predicted. A simple model of the fiber and

matrix components responding in series to imposed loads leads to

conservative estimates of the properties in this direction. More

comprehensive and elaborate models show that the transverse properties and

shear moduli are sensitive to:

- the shape of the fibers;

- the packing geometry of the fibers;

- the variations in spacings of the fibers;

- the properties of the matrix.

Ambiguities in the theoretical models make it difficult to isolate and

identify the extent to which each of these factors influences the

transverse properties and shear moduli of composites_ qualitatively, it is

clear that the matrix dominates the behavior of these properties.

A model for compressive strength based on a failure mode of in-phase

fiber buckling leads to the conclusion that the compressive strength of

unidirectional composites is determined by the shear modulus of the matrix.

Experimental observations can be rationalized in terms of this model if the

effective shear modulus of the matrix is assumed to be less than that of

the comparable bulk material. Adherence to this model further requires

that the effective shear modulus of the matrix be dependent upon the system

of reinforcing fibers used and/or dependent upon the degree of adhesion

between the fibers and the matrix.



Current theoretical models cannot unambiguously explain or predict the

tensile strength of unidirectional composites_ however, examination of

models for the extremes of fiber-matrix coupling leads to a qualitative

identification of the critical factors that influence tensile strength:

- the statistics of the fiber strengths;

- load transfer efficiency;

- resistance of the matrix to crack propagation;

- the adhesive bond strengths between the fiber and the matrix

The direct contribution of the strength of the matrix to the tensile

strength of the composite is negligible, nonetheless, an imperfect matrix

can seriously detract from the realization of the full strength potential

of the fibers through indirect influences involved in load-transfer

efficiency or crack sensitivity.

Load-transfer efficiency and crack sensitivity appear to be diametric

functions of the adhesive bond strength between the fiber and the matrix.

This implies that some optimum (not necessarily a maximum) adhesive bond

strength is required to establish a proper balance between load transfer

efficiency and the overall strength-toughness of the composite.

It was suggested in some physiochemical models that the molecular

mechanisms involved in achieving adhesion between the fiber and matrix

could significantly perturb the molecular structure of the matrix_ these

structural perturbations may develop in an interphase region whose

properties differ appreciably from the properties of bulk material.

Additionally, stress diffusion from fiber to the matrix may also alter the

properties of the matrix locally. Since very large surface areas are

involved in the contact between the fiber and the matrix, a sufficient

quantity of interphase material could be generated to influence the average



in situ properties of the matrix. Hence, it is reasonable to expect that

the average properties of matrix in composites may differ from the

corresponding properties of bulk material and may differ between various

reinforcing fiber systems.

In conclusion, the contributions of the reinforcing fibers to the

performance of composite materials are qualitatively well understood.

Fiber dominated properties (i.e., the longitudinal modulus) can be

adequately explained and predictec% The direct contribution of the matrix

to the longitudinal modulus and tensile strength is negllgible_ however,

secondary effects associated with the matrix can detract from the potential

tensile strength of the system. Although current simple theoretical

models indicate that the matrix controls the compressive strength,

transverse moduli, and shear moduli of composites, this is not sufficient

for the solution of boundary value problems involving nonlinear, thermal,

and dynamic loading.

Comparatively little effort has been given to identify the specific

roles of the matrix in the overall performance of advanced composite

materials. This is largely due to the emphasis on longitudinal modulus as

well as the theoretical and experimental difficulties involved in isolating

the oontributions of the matrix from effects due to fiber shape and packing

geometry. The possibility that the properties of the matrix can differ

from the properties of bulk material, as well as differ between various

fiber systems, further complicates the in sltu matrix.

Since the interaction of the fiber and matrix is complex, It is likely

that the best technique to use to study the micromechanical behavior would

be a numerical method. It is therefore not surprising that the finite

element method is often used to develop the micromechanical model.

Although it is perhaps the most powerful numerical method over the entire



spectrum of engineering science, it has never been fully satisfactory for

problems with high stress gradient, complex interface phenomena, high

thermal gradients and large variations in the stiffness within the same

body. Unfortunately all of these occur within a ceramic composite

assembly. Nevertheless, the use of finite element to study the

micromechanics of composites is quite contain, perhaps primarily due to the

absence of a reasonable alternative.



3. BfEN[I%RY ELEMENT FOI_f_TION FOR CERAMIC (IRR3SITES

3.1 Introauctlon

It is evident that for proper micromechanical analysis of ceramic

composites one needs to use a numerical method that is capable of

idealizing the individual fibers or individual bundles of fibers embedded

within a three-dimensional ceramic n_trix. The analysis must be able to

take account of high stress gradients from diffusion of stress from the

fiber to the ceramic matrix and allow for the interaction between the

fibers through the ceramic matrix. The analysis must be sophisticated

enough to deal with failure of fibers described by a series of increasingly

sophisticated constitutive models. Finally, the analysis must deal with

micromechanical modeling of the composite under nonlinear thermal and

dynamic loading.

The boundary element method is uniquely suited for the task. BEM has

proven its ability to accurately determine stress near stress

concentration. All functional quantities in a BEM system are on the

boundary and interface surfaces, therefore, allowing nonlinear interaction

between the matrix and insert interface to be readily described by failure

models. Furthermore, recent development has shown the generality and

versatility of boundary element method in analyzing large two- and three-

dimensional models subjected to static, dynamic and thermal loads involving

materials with nonlinear behavior.

3.2 xneec al B:aua  

The conventior_l boundary integral equation for displacement is the

starting point for the ceramic composite formulatiorL The displacement for

a point _ inside the elastic composite mtrix is given below

Cij({)ui({) = ;s[Gij(x,_)ti(x) - Fij(x,_)ui(x)]dS(x)



N

* _ ;sn[Gij(x,_)ti (x) - Fij(x,_)ui(x)]dSn(x)
n=1 i,j --1,2,3

(3.1)

where

Gij 'Fij are the fundamental solutions of the governing differential

equations of the ceramic matrix of infinite extent

Cij

ui,t i

S, Sn

are constants determined by the relative smoothness at

are displacements and tractions

are surfaces of the _atrix and holes (left for fiber)

respectively

N is the number of fibers

The conventional boundary integral equation for displacement can also

be written for each of the N insert fibers. For the displacement at a

point _ inside the mth insert we can write

CTj(_)Si({) = _sm[GTj(x.{)ti(x)- FTj(x,_)Si(x)]dS m(x)

i,j = 1,2,3

GTj,FTj are the fundamental solutions of the mth insert

%

(3.2)

are constants determined by the relative smoothness at _ in

insert m

m

ui°t i are displacement and tractions associated with the mth

insert

the surface of the mth insert

I0



We next examine the interface conditions between the composite _atrix and

the insert. For a perfect bond the displacement of the matrix and the

displacement of the inserts along the interface the interface are equal and

the tractions are equal and opposite.

Uj(x) --uj(x) (3.3a)

tj(x) =- tj(x) (3.3b)

For a stiff insert in which the elastic modulus is much greater than the

modulus of the composite matrix, the Poisson ratio of the insert can be

assumed equal to that of the matrix with little error. Therefore, upon

consideration of the surface normals at the interface and examination of

the Fij kernels, we can write the following relation for the mth insert

_ij(x,_) : - (3.3c)Fij(x,_)

Substitution of equations (3.3) into equation (3.2) yields the following

modified boundary integral equation for insert n%

CTj(_)ui(_) = Ism[-G_ij(x,_)ti(_) + Fij(x,_)ui(x)]dsm(x) (3.4)

Finally adding N insert equations (3.4) to equation (3.1) and cancelling

terms, yields the modified boundary integral equation for the composite

matrix

Cij(_)ui(_) = ;s[Gij(x,{)ti(x) - Fij(x,_)ui(x)]dS(x)

N

+ _ ;sn[Gij(x,_)ti (x)dSn(x)
n=1

(3.$)

where

m

Gij(x, _) = Gij(x, _) - G_ij(x,_)

11



n

Cij constants dependent on the geometry at

3.3 Numeric_l ImPlementation

3.3.1 Discretization

The integral representations of the previous section are exact

statements of the ceramic composite problem, however, approximations such

as finite dlscretization and numerical integration are necessary in order

to obtain a solution to non-trlvlal problems. The goal of the numerical

implementation of the present formulation is to obtain the most accurate

and efficient impl_mentation possible.

The first step in this process is the conversion of the two-

dimensional kernel integral over the surface of the hole and insert into a

line integral. By performing an analytical integration in the

circumferential direction on the surface of the hole (or insert) a

considerable amount of computational time can be saved in the numerical

integration. In this process the holes and inserts are assumed to be

circular and a circumferential variation of ao+alcos0 + a2sin8 is assumed

in the displacements and tractions on the surface of the holes and insert_

Furthermore, tensor transformations on the kernels are necessary for

inserts oriented at oblique angles with respect to the global axes. The

resulting kernels, which contain a large family of elliptical integrals.

are long and formidable. The complexity of these kernels prohibits their

presentation in a tidy manner, and therefore, they have not been presented

in this report.

Once the analytical integration is complete, the inserts are

discretized in their axial direction using linear or quadratic shape

functions. In discretized form, equation (3.4) can be written for a single

insert as

12



P

p=1

P
7

p=l

(3.6)

where P is the numberof line elements, and

NT(_) represents the shape function across the line element.

Stmm_tion over 7 is implied.

In a similar manner, equation (3.5) can be discretized using one- and

two-dimensional shape functions in the foll_ing manner.

Q

Cij(_)ui({) = }

q=1

Q

q=l

P

+}
p=1

7

[ SspGij(x,_)N¥(")dsP ] ti

where Q is the number of surface elements on the outer surface of the

composite matrix of the region, and

M_(n1,_ 2) represents the two- dimensional shape function.

Sumnation over 7 and _ is implied.

Note that the same number of nodes, and consequently shape functions,

are not necessarily used to describe both the geometric and functional

variations. Specifically, in the present work, the geometry is exclusively

defined by quadratic shape functions. On the other hand, the variation of

the primary quantities can be described, within an element, by either

13



quadratic or linear shape functions. (The introduction of linear

variations provides ccmputationally advantageous in someinstances.)

3.3.2 Numerical Integration

The complexity of the integral in the discretize equation necessitates

the use of numerical integration for their evaluation. The steps in the

integration process for a given element is outlined below:

I. Using appropriate Jacobian transformations, the curvilinear line

elements and surface elements are napped onto a unit line and planar unit

cells, respectively.

2. Depending on the proximity between the field point (_) and the

element under consideration, there may be element subdivision and

additiorml mapping for improved accuracy.

3. Gaussian quadrature formulas are employed for the evaluation of

the discretized integral over each element (or sub-element). These

formulas approximate the integral as a sum of weighted function values at

designated points. The error in the approximation is dependent on the

order of the (Gauss) points employed in the formula. To minimize error

while at the same time maintaining computational efficiency, optimization

schemes are used to choose the best number of points for a particular field

point and element (Watson, 1979).

4. When the field point coincides with a node of the element being

integrated, the integration becomes singular. In this case, the value of

the coefficients of the Fij kernel corresponding to the singular node

cannot be calculated accurately by numerical integratior6 Instead, after

the integration of all el_nents is complete, this value is determined so as

to satisfy a rigid body displacement of the body (Banerjee and Butterfield,

1981).

14



3.3.3 Assembly of Equations for Composite Inserts

After the derivation of the modified boundary integral equations and

the analytical circumferential integration of the kernel functions, the

next critical step in the formulation is the assembly of the inserts into

the system equations. Here, efficiency is of utmost importance. The

approach to writing an efficient algorithm is to keep the number of system

equations to a minimum by eliminating all unnecessary unknowns from the

system. The strategy used is to retain in the system only traction

variables on the matrix/insert interface. Tnis is in contrast to a general

multi-region problem where both displacement and tractions are retained on

an interface. The elimination of the displacements on the interface is

achieved through a backsubstitution of the insert equations into the system

equations which are made up exclusively from equations written for the

composite matrix (on the outer surface and on the surface of the holes).

The procedure is described below.

Equation (3.7) is used to generate a system of equations for nodes on

the outer surface of the matrix and for nodes on the surface of the holes

containing the inserts. Written in matrix we have

On Matrix Surface: Gt - Fu + GtH = 0 (3.8a)

On Hole for Insert: Gt - Fu + GtH = I_ (3.$b)

where

t and u are traction and displacement vectors on the outer surface of

the composite matrix

tH and uH are traction and displacement vectors on the hole

I is the identity matrix

Our goal is to eliminate uH from the system. To this end, equation (3.6)

is written for each node on an insert, collocating slightly outside the

15



insert [where CTj = o], we obtain

(3.9)

Post multiplying equation (3.8b) by the F matrix in equation (3.9) yields

(3.10)

Equation (3.9) can now be set equal to equation (3.10) and the final fo_m of the

system is derived.

On Matrix:

On Hole:

G'T.- Fu +GT. R = 0

- + - --o (3.11)

At every point on the outer surface, either the traction or the

displacement is specified and on the surface of the hole only the tractions

are retained. Therefore, the number of equations in the system are equal

to the final number of unknowns, and hence, the system may be solved.

Thereafter, equation (3.8b) is used to determine the displacement on the

matrix/insert interface.

It should be noted that since the displacement about a particular hole

is present only in the insert equation corresponding to that hole,

backsubstitution can be performed one insert at a time in a more efficient

manner than backsubstitution of all inserts at once. Further note that

nowhere in the assembly process is a matrix inversion necessary. This

efficient assembly process was made possible due to the unique formulation

of the modified boundary integral equations developed earlier in this

section.

When the composite matrix is divided into a multi-region model, the

above insert assembly is performed for each region independently.

Thereafter, equilibrium and compatibility conditions are invoked at con_n

16



interfaces of the substructured matrix composite. After collecting

together the known and unknown boundary quantities, the final system can be

expressed as

where

Abx = Bby (3.12)

x is the vector of unknown variables at boundary and interface

nodes,

y is the vector of known variables, and

Ab,B b are the coefficient matrices

Standard numerical procedures can be used to solve the unknowns in

equation (3.12). Details are described in the computer development

section.

3.4 Interior Ouantities

Once all the displacements and tractions are known on the matrix

outersurfaceandon the matrix/insert interface, interior quantities of

displacement, stress and strain can be determined at any point in the

composite matrix or in the insert. For displacement either the

conventional boundary displacement integral equation (3.1) or (3.2) can be

employed or alternatively the modified equations (3.3) or (3.5) can be

used.

Equations for strains can be derived from the forementioned

displacenent equations and the strain-displacement relations. Thereafter,

equations for stress are obtained by substituting the resulting strain

equations into Hooke' s law.

The resulting equations, however, are not only invalid on the surface,

but also difficult to evaluate numerically at points close to it. For

points on the surface, the stresses can be calculated by constructing a

17



local Cartesian coordinate system with the axes I and 2 directed along the

tangential directions and the axis 3 in the direction of the outward

normal. The stresses %ij referred to these local axes (indicated by

overbars) are then given by:

- `0 _3+°11 - 1-`0 2 (_11 + e22) + _'$'-'_811

-- -- E -

_r12 = _r21 - 2(l+v) s12

- _ E': E -
¢r22 = I-_ t3 + 2 (ell + e22 ) + _ e22

1-'o
(3.13)

;32 = _23 = t2

°31 = a13 = tl

where E is the Young's modulus, _ij defines the components of the strains

in the local axes system and ti are the traction on the boundary. This

method of evaluating the stresses on the surface was originally devised by

(Rizzo and Shippy, 196 8).

18



4. _ PRDGRAM D_%_/)PME_E

4.1 Introduction

The goal of the computer program developed for ceramic composites is

the accurate and efficient implementation of the formulation described in

Section 3. Of equal importance is the degree of generality required in the

definition of component geometry, loading and material properties. This is

necessary if the program is to be applicable to real problems in the

aerospace industry.

For this reason the ceramic composite formulation has been implemented

in the three-dimensional boundary el_mnt cumputer code _EST3D' (Boundary

Element Stress Technology - Tnree-dimensional) which was developed for NASA

by Pratt and Whitney and SJNY/Buffalo under contract NAS3-23697. Since its

development, BEST3D has proven itself to be a highly accurate and

numerically efficient boundary eleTent progra_

The development of the computer program 'Composlte-BEST' is discussed

in the following sections.

4.2 Progrm Stny:ture

Composite-BEST is designed to be a fully general ceramic composite

analysis system employing the boundary element method. The program is

written using standard FORTRAN 77. Development has been carried out at

SUNY/Buffalo on an HP9000 minicomputer system The required code and

workspace fit in core without requireTent for overlays. The nature of the

method is such that, for any realistic problem, not all required data can

reside simultaneously in core. For this reason extensive use is made of

both sequential and direct access scratch files.

The program first executes an input segment. After the input has been

processed, the surface integrals are calculated and assembled into the set

19



of syst_n equations using specified boundary conditions, followed by the

insert assembly and the inclusion of the insert equations into the general

system The system matrix is then decomposed and saved on disk, followed

by the calculation of the solution vector. The full displacement and

traction solution on each boundary element and insert element is then

reconstructed from the solution vector. In a time dependent problem t_he

process of constructing the load vector for the system equations is

repeated at each time step, but the integration, formation and

decomposition of the system matrix are done only once.

Various aspects of the computer program are discussed below.

4.3 n rm

The input for Composlte-BEST is free field. Meaningful keywords are

used to identify data types and to name particular data sets. The input is

divided into five types:

1. Case Control Cards

The case eontrol cards define global characteristics of the probl_

In addition to the problem title, the times for multiple time steps are

defined. The reading or writing of restart data is also defined at this

point. The restart facility allows one to change the arrangements of

fibers without recalculating the various coefficients.

2. Material Property Definition

The material property input allows the definition of material

properties for a variety of materials. The Young's modulus can be

prescribed in tabular form for a user-defined set of temperatures.

Temperature independent values of Poisson's ratio are also defined.

2o



3. Geometry Input

Geometry input is defined one GMR (generic modeling region, or

subregion) at a time. To initiate the input, a tag is provided to identify

the GMR, a material name and reference temperature are defined to allow

initialization of material properties.

The next block of geometry input consists of the Cartesian coordinates

of the user input points for the outer surface geometry definition of the

composite matrix, together with identifiers (normally positive integers)

for these geometric nodes.

Following the definition of an initial set of nodal points, the

surface connectivity of the outer surface of the composite matrix is

defined through the input of one or more named surfaces. Each surface is

made up of a number of elements, with each element defined in terms of

several geometric nodes. Three sided elements, defined using six rather

than eight geometric nodes, are used for mesh transition purposes. The

terms quadrilateral and triangle are normally used to refer to the eight

and six noded elements, although the real geometry represented is, in

general, a nonplanar surface patch. Seven and nine noded elements are made

available by adding a central node to the six or eight noded elements.

Over each element the variation of displacement and traction can be

defined using either the linear or quadratic shape functions. Linear and

quadratic elements can share a common side, which is then constrained to

have linear displacenent and traction variation.

Finally an option is available to allow quadratic functional variation

(8 or 6 nodes) to be used in conjunction with linear geometry (4 or 3

nodes). In this case the program generates the additional nodes

automatically at mid-point of the sides. The characteristics of the

various element types are summarized below.

21



Surface Element Type

Geometry
Nodes

Linear Quadrilateral 8 or 9

Linear Triangle 6 or 7
Quadratic Quadrilateral 8 or 9

Quadratic Triangle 6 or 7
Quadratic Quadrilateral 4

Quadratic Triangle 3

Displacement/Traction Nodes

4

S

8or 9

6 or 7
8
6

Following the definition for the composite matrix outer surface, the

embedded inserts are then definecl These are defined as curvilinear llne

elements with a prescribed radius of cross-section. The inserts are

generally straight, however as noted, curved inserts are also allowecl The

user first defines the nodal coordinates of the centerline of the insert,

Thereafter, the radius and the insert connectivity is definec% Linear and

quadratic elements are available for both geometry and functional

variation, however, quadratic functional variation over linear geometry is

not presently available.

summa rized below.

Insert Element Type

Linear-Linear

Quadratic-Linear
Quadratic-Quadratic

The various options for the insert elements are

Geometry
Nodes Displacement/Traction Nodes

2 2

3 2

S S

Note only the surface of the insert needs to be defined, i.e., the hole in

the composite matrix which encompasses the insert does not have to be

explicitly defined.

4. Interface Conditions

The interface input describes the connection of surfaces or elements

of one composite matrix region to another. Interfaces between the

composite matrix and inserts do not have to be defined. Special types of

interface conditions which are available presently include fully-bonded and
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sliding contact between two GMRs, and springs to other regions. In the

current implementation, fully-bonded connections between the insert and

matrix has been assumed. This will be relaxed in later work.

5. Boundary Condition Input

The final input section provides for the definition of boundary

conditions, as functions of both position and time. Data can be input for

an entire surface, or for a subset (elements or nodes) of a surface. Input

can be in global coordinates, or can define rollers or pressure in the

local coordinate system. Input simplifications are available for the

frequently occurring cases of boundary data which is constant with respect

to space and/or time variatiorL Each boundary condition set can be defined

at a different set of times.

4.4 Smrface Integral Calculation

Following the processing of the input data, the surface integrals

occurring in equations 3.6 and 3.7 are evaluated numerically. This is the

most time oonsuming portion of the analyses. In Composite-BEST the results

of these integrations are stored as they are calculated, rather than being

assembled into the final equation system immediately. Although this is

somewhat more costly in terms of storage and CPU (central processing unit)

time, it has led to much greater clarity in the writing of Composite-BEST.

In addition, it provides much greater flexibility in the implementation of

various restart and boundary condition options.

The calculations proceed first by GMR (generic modeling region), then

by source point (the equation being constructed) and finally by surface

element and insert element. The results for each source point element pair

are written to disk. All of the calculations are carried out and stored in

the global (Cartesian) coordinate system
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The integration of the BEM equations is the most complex part of the

code. In this process either singular or nonsingular integrals can be

encountered. The integrals are singular if the source point for the

equations being constructed lies on the element being integrated.

Otherwise, the integrals are nonsingular, although numerical evaluation is

still difficult if the source point and the element being integrated are

close together.

In both the singular and nonsingular cases Gaussian integration is

use_ The basic technique is developed in Banerjee and Butterfield, 1981.

In the nonsingular case an approximate error estimate for the integral was

developed based on the work of Stroud and Secrest (1966). This allows the

determination of element subdivisions and orders of Gausslan integration

which will retain a consistent level of error throughout the structure.

Numerical tests have shown that the use of 3, 4o and 5 point Gauss rules

provide the best combination of accuracy and efficiency. In the present

code the 4 point rule is used for nonsingular integration, and error is

controlled through element subdivision. The origin of the element

subdivision is taken to be the closest point to the source point on the

element being integrated.

If the source point is very close to the element being integrated, the

use of a uniform subdivision of the element can lead to excessive computing

time. This frequently happens in the case of aerospace structures, due

either to mesh transitions or to the analysis of thin walled structures.

In order to improve efficiency, while retaining accuracy, a graded element

subdivision was employed. Based on one-dimensional tests, it was found

that the subelement divisions could be allowed to grow geometrically away

from the origin of the element subdivisioru Numerical tests on a complex

three-dimensional problem have shown that a mesh expansion factor as high
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as 4.0 can be employed without significant degradation of accuracy.

In each case of singular integration (source point on the elements

being integrated) the element is first divided into subelements. The

integration over each subelement is carried out using a Jacobian

transformation in mapping. This coordinate transformation produces

nonsingular behavior in all except one of the required integral_ Normal

Gauss rules can then be employed. The remaining integral (that of the

traction kernel Fij times the isoparametric shape function which is 1.0 at

the source point) is still singular, and cannot be numerically evaluated

with reasonable efficiency and accuracy. Its calculation is carried out

indirectly, using the fact that the stresses due to a rigid body

translation are zero (Lachat and Watson, 1976). It has been found that

subdivision in the circumferential direction of a two-dimenslonal surface

element is required to preserve accuracy in the singular integration of the

outer surface. A maximum included angle of 15 degrees is used.

Subdivision in the radial direction has not been required.

The integrals required for calculation of displacement and stress at

interior or surface points are of the same type as those involved in the

generation of the system equations, except that only nonsingular integrals

are involved. If the source point involved is located on the surface of

the body, then numerical integration is not required. Instead, the

required quantities are calculated using the displacements and tractions on

the element (or elements) containing the source point, as discussed in

Section S.4.

4.5 System Matrix Assembly

The first step in the assembly process is the reduction of the

rectangular matrix of F integrals to a square matrix. This matrix is the
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prototype of the system matrix. The coltmms of this matrix are transformed

or replaced, as required by the boundary conditions, as the assembly

process proceeds.

The next step in the process is the incorporation of the insert

equations in the systen_ As was described in detail in Section 3.3.3, the

insert assembly consists of an insert by insert matrix multiplication and

backsubstitutior_ The backsubstitution minimizes the nunber of equations

required in the system since the displacement about the insert is

eliminated from the system and only tractions are retained.

A key problem in the entire process is the proper definition of

appropriate coordinate systems, on a nodal basis. This is a problem common

to any direct boundary element method which treats structures with

nonsmooth surfaces. It arises because the tractions at a point are not

uniquely determined unless the normal direction to the surface varies

continuously at the point in question.

The original surface integral calculations are all done in global

coordinate_ If a displacement boundary condition is specified at a given

node, in global coordinates, then no new coordinate system definition is

required. It is only necessary to keep track of the subset of elements,

containing the given node, on which the fixed displacement is to be

reactecl However, if a displacement is specified in a nonglobal direction

at a given node, then a new nodal coordinate system must be defined and,

potentially, updated as further boundary conditions are processed. The

associated nonzero reactions must then be expressed in the new coordinate

system.

Following this preparatory work, the final assembly of the system

equations is carried out. It is performed in three major steps:

I. Transformation of the columns of the matrices to appropriate local

26



coordinate systems and incorporation of any boundary conditions

involving springs.

o Incorporation of compatibility and equilibrium conditions on

interfaces between GMR_ On interfaces between two composite regions

either a completely bonded condition (full displacement compatibilty)

or a sliding condition (only normal displacement compatibility) is

available. At the interface between the insert and matrix a fully

bonded connection has been assumed which will be relaxed later.

3. Application of specified displacements and tractions.

Two particular features of the equation assembly deserve special

comment. First, in multi-GMR problems the system matrix is not full.

Rather, it can be thought of as consisting of an NxN array of submatrices,

each of which is either fully populated or completely zero. Only the

nonzero portions of the system equations are preserved during system matrix

assembly. In order to improve the numerical conditioning of the system

matrix for the solution process, the columns are reordered to number

variable lying on the same interface, but belonging to two different GMRs°

as close together as possible. The rcws of the system matrix are placed in

the same order as the columns.

Second, rather than simply assembling an explicit load vector at each

time point in the solution process, load vector coefficient matrices are

assembled and stored. These allow the updating of the load vector at any

required time point simply by interpolating the time dependent boundary

conditions and performing a matrix multiplicatioru A similar process is

used in the calculation of interior and boundary stresses.
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4.6 System Equation Solution

The solver employed in Composite-BEST operates at the m/matrix level,

using software from the LINPACK package (Dongarra, 1979) to carry out all

operations on submatrices. The system matrix is stored, by submatrices, on

a direct access file. The decomposition process is a Gaussian reduction to

upper trianglular (submatrix) form. The row operations required during the

decomposition are stored in the space originally occupied by the lower

triangle of the system matrix. Pivoting of rows within diagonal

submatrices is permitted.

The calculation of the solution vector is carried out by a separate

subroutine, using the decomposed form of the system matrix from the direct

access file. The process of repeated solution, required for problems with

multi-time steps, is highly efficient.
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5. PRGGRAM DA_A INP[_ AND RES3LTS

5,1 Ir,p_ Description

The input to Composite-B_T is presently divided into five sections as

follows:

io

2.

3.

4.

5.

Case control (**CASE control)

Material properites (*'MATErial property)

Generic modeling regions (*'GMRegion)

Interfaces (**INTErface)

Boundary condition sets (''BCSEt)

A detailed description of each of these sections is provided in the

following paragraphs. The interface sections are optional; the other

sections must be input at least once.

Input quantities may be either alphanumeric or numeric (integer,

floating point, E, or D format) as specified and may be up to 16

characters. Individual entries on a card (both keyword and input) must be

separated by at least one blank space. Input for certain keywords (as

noted) my be continued onto more than one card by repeating the keyword on

the new card(s).

Keywords may be input as shown; minimum input is the the CAPITALIZED

characters. Those keywords which are underscored must always be input.

Keywords shown below are indented to indicate groups of cards to be input

together. However, it is not necessary to indent in this manner.

The current progra_ limits include:

20 time points

15 generic modeling regions

600 elements (300 elements in problems having interior points)

2500 nodes (560 nodes per region)
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100 inserts per generic modeling region

500 inserts per problem

1200 source points (600 source points in problems having interior

points )

302 source points per region in a local coordinate system

99 interface element pairs (total)

350 interface node pairs (total)

60 boundary condition sets with springs

maximum element number of 9999

maximum node number of 9999

maximum of 24 entries per input card

I, Case Control Input

Keyw_rd

**CASE control

T33De

RESTart

TIMEs

Type of

Alphanumeric

Alphanumeric

Nc_neric

Case title

READ or WRITE

Output time value(s)

The analysis is assumed to be static, constant temperature, elastic,

and time independent unless the appropriate optional keyword is input. The

optional keywords need be included only if a particular option is to be

turned on.

The case title should have a maximum of 72 characters.

Input on the TIM_s card may be continued on more than one card

2. Material Property Input

The material property input section must be repeated for each separate

material.
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Keyword

•"MA_rial property

TEMPerature

EMODulus

POISson

Type of

Alphanumeric

Numeric

Numeric

Numeric

Material name

Temperature value (s)

Young' s modulus value (s)

Poisson's ratio value

The Young's modulus must be input in the same order as the temperature

values.

Input on the TEMPerature and EMODulus cards may be continued on more

than one card.

NOTE: The elastic modulus of the inserts are defined in the GMR input.

The Poisson Ratio for inserts is taken to be the same as the

Poisson Ratio of the Composite matrix.

o Generic Modeling Region Input

The generic modeling region section must be repeated for each region.

Keyword

"'GMR

MAT

TREFerence

PO_ts

SURFace

TYPE

Type of

Alphanumeric

Alphanumeric

Numeric

Numeric

Alphanumeric

Alphanumeric

Region name

Material name

Reference temperature value

Node number, coordinate values

(x,y,z)

Surface name,

surface name)

(reference

LINE or QUAD
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ELEMents

INSErt

POINts

TYPE

ELEMent

INTErior

POINts

Numeric

Alphanumeric

Numeric

Numeric

Alphanumeric

Numeric

Alphanumeric

Numeric

Element number, node numbers

Element number, + or -

Elastic modulus of insert

Node number, coordinate value

(x,y,z)

LINEar or GUAD

Element number, radius of
insert element, node numbers

Point number, coordinate

values (x,y,z) for interior

sampling points

The SURFace input may be either of two forms:

- a TYPE card and an ELEMents card to define element connectivity

The TYPE designation in SURFace input specifies the traction or

displacement variation on the element. A surface may contain only one TYPE

card Therefore, if mixed variation is required in a region, two surfaces

must bedefined.

Surface elements must have either 6 or 7 (triangles) or 8 or 9

(quadrilaterals) nodes. Element numbering is consecutive around the

boundary.

Insert elements must have either 2 (linear) or 3 (quadratic) nodes.

Nodes referenced in element connectivity must be explicitly defined under

'insert' POINt card and the points should not intersect the outer boundary

or other insert elements.

The sign associated with the defining element on the NORMal card

should be plus (+) if the element is numbered in a counterclockwise
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direction as seen from the outside of the model or minus (-) if it is

numberedin a clockwise directio_ Disjoint boundaries must have multiple

element/sign pairs on the NORMalcard.

The points which are input in the INTERior input are treated as

"interior" points. These points may be either nodal points, other

surface points, or true interior points.

4. Interface Input

The interface input describes the connection of surfaces (or elerents

or points) of one composite matrix region to another. Interfaces between

the composite matrix and inserts do not have to be defined.

%_e interface section must be repeated for each interface.

",INTErface

GMR

S/RFace

ELEMents

Type of

Alphanumeric

Alphanumeric

Numeric

POINts Numeric

GMR Alphanumeric

_JRFace Alphanumeric

ELEments Numeric

POINts Numeric

SLIDing

Region r_me of first region

Surface nane in first region

Element number(s) in first

region

Node number(s) in first region

Region name of second region

Surface name in second region

Element number(s) in second

region

Element number(s) in second

region

The interface is assumed to have complete displacement compatibility

unless a SLIDing card is input, in which case only normal displacement

compatibility is assumed.
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The ELEMents card and/or the POINts card are included in SURFace input

only to designate a subset of that surface.

Input on the ELEMents and POINts cards may be continued on more than

one card.

5. Boundary Condition Set Input

The boundary condition set section must be repeated for each new

boundary condition.

Type of

K_eyword

ID Alphanumeric

GM_ Alphanumeric

VALUe

RELAtion

SURFace Alphanumeric

ELEMents Numeric

POINts Numeric

TIMEs Numeric

LOCAl

GMR Alphanumeric

SURFace Alphanumeric

EL_4ents Numeric

POINts Numeric

DISPLacement _A_neric

SPLIst Numeric

Numeric

RIGId Numeric

SPRIng Numeric

Boundary condition set name

Region name

Surface name

Element number(s)

Node number(s)

Input time value(s)

Region tame

Surface nave

Element number(s)

Node ntmber (s)

Component value

Source point value(s) or ALL

or SAME

Time point identifier, dis-

placement value (s)

Component value

Component value, spring value
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TRACtion

SFLIst Numeric

T Numeric

_urce point valuers) _ALL
or _

Time point identifier, trac-
tion value(s)

The ELEMentscard and/or the POINts card are included in _JRFaceinput

only to designate a subset of that surface.

The TIMEs card must be omitted in a boundary condition set which

contains a RIGId card. If the value(s) on the TIMEs card differ from those

values in the case control input, the output is calculatd by linear

interpolation. In the case of time independence (i.e., the TIMEs card is

(_nitted) the time point identifier on the T card must be I (one).

The LOCAl card designates input in the outward normal directio_ The

component value on the DiSPLacement, RIGId, SPRIng, or TRACtion card must

be I (one). Care must be taken not to mix global and local coordinate

systems on a particular element. Care must also be taken not to input

conflicting components on a particular node in a particular element.

The VALUe card should be included with the DiSPlacement card, the

RIGId card, or the TRACtion card. The RELAtion card should be included

with the SPRIng card.

Either RIGId input, or SPRIng input, or TRACtion input must be

included in a boundary condition set. This input set _ be included up to

three times (once for each component) in a boundary condition set.

However, different boundary condition types may not be mixed in a boundary

condition set.

The SPLIst card indicates the order in which the values are to be

input on the T cards. The input may be in either of three forms:

- nodal values

35



ALL to indicate that a single constant value is to be input

SAMEto use the previous source point list within the current

boundary,condition set (this option may not be used for the first

source point list in the current boundary condition set).

Input on the ELEMents, POINts, SPLIst, and TIMEs cards may be

continued on more than one card. Input on the T card may be continued on

more than one card, including the time point identifier on each card.
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5,2 Sa_le

The following pages contain a sample data input for Composite-BEST for

a cube with five inserts in tension. Note the simplicity of the input

section for inserts. Each insert may contain a number of linear or

quadratic elements. The keyword ELEMents is used before the definition of

each distinct (non-connected) insert.

**CASE

TITLE

TIHES I.

RESTART WRITE

**HATE

IO MATt

TEMP 70.0

EHOD 100.

POIS O. 3

**GHR

ID OM_

MAT NAT1

TREF 70.0

POINTS

1

2

3

4

5

6

7

8

1001

1002

1003

1004

1005

1006

1007

1008

2001

2002

2003

2004

2005

2006

2007

2008

SURFACE SURF11

TYPE OUAD

ELEMENTS

101 1

102 3

103 5

104 7

1 1

201 2001

NORMAL 20t +

CUBE WITI! INSERT UNDER TEIISIOH

0000

5OO0

1 0000

1 0000

1 0000

5O0O

0000

0000

OO00

5000

1 0000

1 0000

0000

5000

0000

0000

0000

5000

I 0000

I 0000

1 OOOO

5000

0000

0000

0000

0000

0000

5000

0000

0000

0000

5000

0000

OOO0

OO00

5000

O000

0000

OO00

5000

0000

0000

0000

5000

OOOO

0000

0000

5000

0000

0000

0000

0000

0000

0000

0000

0000

5000

5000

5000

5000

5000

5000

5000

5000

I 0000

1 0000

I 0000

1 0000

t OOOO

1 0000

1 0000

1 0000

2 3 1003 2003 2002 2001

4 5 1005 2005 2004 2003

6 7 1007 2007 2006 2005

8 1 1001 2001 2008 2007

2 3 4 5 6 7

2002 2003 2004 2005 2006 2007

1001 1002

1003 1004

1005 1006

1007 1008

8

2008
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INSERT 1

POINTS
3OO1

3002

3003

3004

3005

3006
3007

0OO.

O 5

O 5

0 5

O 5

0

0

O

0.5 O.

0.5 O. 125
0.5 0.25

0.5 0.5

5 0.5 0.75

5 O. 5 O. 875

5 0.5 1.0

TYPE OUAD

ELEMENTS

301 .I

302 .I

303 .I

INTERIOR
POINTS

9002 .5 .1
9004 .5 .2
9OO6 .5 .3
9007 .5 .35

9010 . 5 . 375
**BCSET

IO BCI

GHR GHR1
SURFACE SURF11

ELEMENTS 104

DISP I
SPLIST ALL

T I 0.0
**BCSET

ID BC2

GHR GHR1

SURFACE SURF11

ELEMENTS 104
POINTS 1001 1007

DISP 3

SPLIST 1001 1007

T 1 O. O.

**BCSET

ID BC3

GMR GMR1

SURFACE SURF11
ELEMENTS 104

POINTS 8 2008

DISP 2

SPLIST 8 2008

T 1 O. O.

**BCSET

ID BC4
GMR OMR1

SURFACE SURF11
ELEMENTS 102

TRAC 1
SPLIST ALL

T 1 100.0

3001 3002 3003
3003 3004 3005

3005 3006 3007

0.5
0.5
0.5

0.5
0.5
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5.3 Output Description

The output from Composite-BEST is relatively straightforward.

consists of ten sections, as follcws:

It

I. Complete echo of the input data set.

2, Summary of case control and material property input.

3. Complete definition for each GMR, including all surface insert nodes,

surface and insert elerents.

4. Complete summary for each interface and boundary condition set,

including the elements and nodes affected.

5. Boundary solution (on an element basis), including displacements and

tractions at each node of each element.

6. The resultant load on each element and on the entire GMR is calculated

and printed.

7. Solution for the displacements and tractions at the Insert/Matrix

composite interface (on an elenent basis).

8. Displacement, stress and strain on a nodal basis, at all surface

nodes, for each GMR.

9. Displacements at interior nodes.

10. Stresses at interior nodes.

A sample output is shown on the following pages for the data input

that was given in Section 5.2,
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S.4 Sample O_t

**** C4S[ COHTROL IRPOT ****

JOB TrTLE CURE RITR IffSERT .ROER TEHS_OH

TIMES FOR SOLOTIOM: 1.00000000

BOgWDARY RESTART : 1

B00H_ARY 7ffTEq_ATION [PSII.ON: .00100000

|RTERIOR INTEGRATION EFglLOff: .O0100nO0

**** HATERIAL ZHP_T ****

HAT£OrAL NAH_: fiAT!

ELASTIC

POIS$ONS RATIO: ,3000

TEHP AtPWA

.70000E*02 ,O0000EtO0 .tO000E*O]

**** _MR |RF"T ****

REGION I

HAHE OHR1 HATERIAL HAT!

PEFE_EffCE TEMP_RATgR_ 70.00

|M|TIAL TEHFERATgRE OF OMR ,00

HOPES 57 ELEHENT$

$OnRCE PO1ffTg 45 CELLS

ROHBER Or INGEST3 1

SelPFAC_S 1

ROLE EtEHENT$ 0

INSERT ELENENTS 3

COORDINATE LIST

NO0£ J

1 .0000

2 .5000

3 1.00nO

4 10000

S 1. 0000

.5000

7 .0000

q .0000

1001 ,0000

1002 ,5000

1003 1.00nO

1004 1.0000

t005 l. OqO0

t0_6 .SO00

1007 ,O00n

tOOq ,0000

2001 .0000

2002 .5000

2003 1.0000

Y

.0o00

.0000

.0000

.SO00

t 0000

10O00

1,0000

5000

0000

0000

0000

5000

I 0000

1.0000

10000

.5000

.0000

.0000

,0000

Z

.0000

.0000

.0000

,0000

.0000

.0000

.0000

.0000

.5000

.SO00

.SO00

.5000

.SO00

.5000

50.0

5000

1.0000

1. 0000

1.0000
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2004 1.0000 .5000 1.0000

2005 1.0000 1.0000 1.0000

2006 5000 1.0000 1.0000

2007 0000 1.0000 1.0000

2000 0000 .5000 I 0000

3OO1 5OO0 .5000 OOO0

3002 5000 .5000 1250

]00] 5000 ,5000 2500

]004 5000 .50OO 5000

]005 5000 .5000 7500

3005 5000 .5000 8750

]007 5000 .5000 I 0000

9002 5000 .1000 5000

9004 5000 .2000 5000

9005 5000 .3000 5000

9OO7 50OO 3500 500O

9010 5000 .]750 5000

COORD|HATE LIST OF _OOE_ GEtlERATED OY _PB£ST

HOPE ] Y Z

73001 5000 60_0 .O250

_3002 5000 .6OOO .1250

73003 5000 .6000 2500

73004 5000 .6000 5000

73005 5000 6000 7500

73005 5000 .6000 0750

73007 5000 .5000 9750

0300! 4134 .4500 0250

53002 4134 .4500 1250

03001 41_4 .4500 2500

R3004 11t4 4500 5000

$3005 41_4 4500 7500

03005 41_4 4500 0750

03007 1134 4500 9_50

93001 505_ 4500 0250

93002 5_K5 4500 1250

_300_ 5_55 4500 2500

93001 58K5 ISO0 5000

9_005 50_5 45OO _500

93006 50FK 4500 0750

93007 50K_ ,4500 9?50

SORFACE SORFll 00ADRATtC 1ARIATTOH

ELEHEHT ffo_s

101 1 2

102 ] 4

103 5 5

104 ? 0

I 1 B

_ !S
ORIGINAL ......
OF POOR QUALITY

3 1003 2003 2002 2001 1001 1002

5 IOnS 2005 20n4 200] 1003 1004

7 100? 2007 2005 2005 1005 1006

1 10ot 2001 200_ 200? 1007 1000

? 6 5 4 3 2

201 2001 2002 2003 2004 2005 200_ 200? 2000

[NSE_T _LEHEffT_ OUA_ATIC /ARIAT|Off

ELASTIC HOO.LUS OF IN_E�TS ,100000E+04

RLEH£tlT RAPtlIS NODES

(ZH_E_T 11

]01 1000 3001 3002 3003

302 ,1000 3003 3004 3005

303 lono 3005 3006 3007

30ORCE POItIT L]_T

I 2 3 4 5 5 7 0 1o01 1002 1003 t004 _005 100_ 1007 100_ 2001 2002 2_0_ 2091

2_75 2005 2007 2008 73001 03001 95001 73002 93002 91002 73003 83003 93003 73001 0]004 03001 7?005 03005 o_no_ 7300_

R]OOK 93005 71007 _3007 93007
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]RIG: _._,_ PA',_E _,,:,

OF POOR QUALITY

**** 800HDAR¥ COMDIT_OH INPOT ****

OHR G_Rt _gfiFAq[ SUhFlt

ELEMEHT LIST

tot

SO_RC_ FO[rlT LI_T

_ _ _00_ 200_ 2DO_ 2DD_ _007 _D99

COHPO_I£MT 1 DISPLACEMENT INPOT

.OUOOO_+O0

.OOOOOt*OO

OOOOOE*O0 .OOOOOE+OO ,OOOOOE*O0 .O0000_*OO .OOOOOK+OO .OOO00£+OO ,O0000E+O0

**** _OOHDIRT COHDIT[OM IHPOT _A**

qHA _HR! SrI_FAC£ SffRFI!

£LFMFHT LIST

104

SOfl_C_ POINT LIST

tOOt 1007

COMPOM_'HT _ Dr_P|.A_£N[MT INPOT

DAIA VAL_ES:

.DOOOOE_O0 ,OOOOOE*OO

A*** _OONOARY CONDITION INPUT ****

CH_ CM_l _ORFAC£ _ORFil

_L[HEtlT LIST

tO4

_O_RC_ _OfNT Lt_T

COM_ON[_T 2 _SPLAC_NEHT _MPOT

DATA _AL_S:

.UOOO0[+00 .OOOOO_OO

**** gO_MOARY COHDITIOtl IM_HT ****

qHR ONRt _ff_FAC£ SU_Ftt

_LEM_HT LIST

102

ROURCE POINT LIST

) 4 _ tO05 200_ 2004

COHp_M_HT t TAACTION TMP_T

DATA _LUES:

fO000£*O3 ._0000_+0] .1OOOO_*O1

.IO000E*O_

2003 tO0_ tO0!

.IOOOO_*O_

HATAIZ DECOHPO_TT]ON - OtA_ONAL 9LOCK

COHDITIOff NffMB_ .I)397£+04

.IOOOQE*O_ 11OOOO_+0_ .10OOO_*q_ tOOOq£,O_
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ORIGINAL PAGE IS

OF POOR QUALITY
JOE TITLE:

BOONDkRY SOLUTION AT TIHE •

CUBE RITE INSERT gNOER TENSION

1.0OOO FOR REO[ON - ONRI

ELEMENT NODE NO. X-D[SPL. Y-DISPL. Z-DISPL. X-TRIC+ T TRAC. Z TRkC.

00000E*00

480210*00

9f10660*00

975310*00

9f10680*00

4qO21E*00

0OO00£*O0

000000*00

177530,00

15593[*00

1299TE*00

170940*O0

177(700OO

170940*OO

129970000

155930_00

15477E*O0

13734E+00

IO1 I

IO1 2

101 3

IOI 1003

101 2003

101 2002

t01 2001

101 1001

101 1002

.13754E*OO .O0000E*O0

.1_419E+00 .O0000E_O0

.li�SOE*O0 .00000E*O0

.3201&E-06 ,00000£+00

119600000 .O0000E÷O0

f34100000 .O0000E_O0

137510'OO .00000_00

000000000 .00000£000

572550-06 .00000E+00

00000£*OO

00000E*O0

OO000E*O0

00000E*00

00000£+OO

O000OE+O0

00000E*OO

00OOO£*OO

00000£*00

102

102

102

102

102

102

102

tO2

102

3

I

5

1005

2005

2004

2003

1003

1004

98866£*00

93793E*00

98891£*00

97565E_00

98891E*00

937930000

9666KE*00

975310*00

926750*OO

70940+00

-. 4_62E-O2

-. 74260*OO

-+ 7932E*00

-. 7426E+00

-. 4761£-02

7094E+00

7717E_00

72162E-03

14960E*00

138630000

1(83aE+OO

154700-06

-.11839[_00

-.17883[_00

-.14960[*00

32045E-00

450_70-O6

.10OO00*03

.100000*03

I0000E*03

100000*O3

f0000[+O3

10000[*03

t0OOOE*O]

I00000*O3

.100000+03

OOOOO[*00

OOO00£*OO

0000016OO

0OOOO[*00

OOOOOE+OO

OOOOOE_00

OOOOOE+OO

OOO00E*OO

OOOO0[*OO

IO3

103

103

103

I03

103

103

103

103

5

6

7

1007

2007

2006

2005

1OO5

1006

96691[*00

480720+00

00000[+00

00OOOE*00

0000ON*00

48072E*00

9q_olE*O0

97565[*O0

4_00R[*00

-. 742600OO

-. 331][+00

-. 5675[+00

-. 5407E*00

-. S_7_[*00

*+ 3313[*OO

-. 7426E*00

-. 79_2[*OO

-. 37870*00

t4139E+O0

132100'00

13896[*OO

OO00n[*OO

-,13696E+00

*.132170*OO

-.11e3P[+O0

16470[-06

|74t1E-06

.00000[+00

.00000[*00

.O0000E*O0

.O0000E*O0

.00OOOE*00

.OOOOO[_OO

.000000+00

.0000OE+00

,00000[*00

00000[*00

00000£*00

O0000E*O0

00000[*00

00000[+00

00000£*00

O0000E*O0

00000[*00

00000£*00

tot

IOt

101

04

O4

04

04

04

O(

7

8

1

0001

2001

2008

200?

10_

1009

00000[*O0 -15675[*00

00000E*O0 O0000E+qO

00000['00 .155930+00

00000[+00 .154_E*00

00000[+00 ,15S¢?E*00

00000[*00 +00000[*00

0000ON*00 -.156750+00

00000[*00 -.IS¢_?E'OO

O0000E_O0 .095220-04

174o6[*00

14fl11[_00

t37S4[+q0

00000[*00

-.137S4E*00

-.14814[+00

-.t3696[+00

.000000*00

0501080-06

-+_9_360*O2

-IOIT2[_03

-895130*02

- 19810E+02

-.095130*02

-,10162[*03

-.890360*O2

-.900210002

-.10606[*03

00000[*00

I_029[*00

O0000E*O0

O0000E*Oq

O0000E*O0

1062_['00

00000[*00

O0000E*O0

OOO00_*O0

.OnO00[*O0

,O0000[+0q

.00000[*00

.OOOOOE*O0

.OOOOO[*O0

,00000£*00

.OOOOO[*O0

O0000E*O0

OOOOO[*00

00000[*00

O0000E*O0

00000£*00

OO000E*Oq

O000OE*OO

O0000E*O0

OOOOO[*OO

O0000[*O0

O0000E*O0

O0000E*O0

00000[*00

OnO00[*O0

00000[,00

O0000[*O0

oonooE*o0

OO00OE*00

00000[*00

O0000[*O0

OOOO_K_Oq

0OOO0['00

.OOOOOE000

.OOOOO[+nq

.OqOO0[+OO

.0OOOO[_O0

-.940_90 _4

.OO00OE_O0

JOB TITLE: COB[ _tTH 3NSERT UNDER TEffRIOR

BOUNDARY $OLOTtON AT TIH[ - 1.0000 FOR REGION • OHRI

EL£HENT NODE _O. X-DISPL. Y-DISPL. Z-D_SPL. X-TRAC. T TRAC Z TRAC

201

201

201

201

201

201

201

201

OOOO0[_00

O0000E+O0

000000+00

400720000

988910÷00

93_93E+00

48021[+00

.1559][,00

.000000*00

=.15675_*00

-.133130*n_

-.1_26E_00

=.14_620-O2

17004E+O0

12997[*OO

1_761[*00

14_11E+00

I_696E*00

13240[*00

118390000

I_883[*00

11oKoE+00

111190*00

.00OO0[*OO

.O0000E+O0

.00000[*00

.00000[+00

.O0000E*O0

O0000E*O0

00000[*00

00000_*00

2001

2002

200_

2004

2005

2006

200?

2008

00000£*00

48021£*00

P00660*00

980910*00

4n072[*00

00000£*00

O0000E*O0

155o3£_00

129o7E*00

17094[*00

-.14"F1[-02

-.17426[+00

-.1331_[+00

-.15675[*00

.OOOOOE*O0

-.13_51[*00

-.17119[*00

-14960E*00

-1_803[*00

-.1403PE*00

-.I_247[*00

-13_9_E*00

-.14_14[_00

00000[*00

00000[*00

00000[*00

00000E*00

00000[+00

OOOOOE*00

O0000E*O0

OOOOOE+OO

00000[*00

00000£*00

00000[*00

00000[_00

0000ON+00

0OOO0[_OO

OOO00£*00

OOOO0£_OO

.00000[*00

.00000[*00

.O0000E*O0

.O0000E*O0

.00000[*00

.00000£_00

.O0000E*O0

.0OO00[*OO

OOOOO£*00

.OOOOO[*O0

.0OOOO£*00

.O00OOE_O0

.000000_00

.O000nE*o0

.O0000E*O0

OOOO0[*OO

.O0000E*00

00000['00

,00000[*00

.O0000E*O0

.O0000[*O0

.O0000[*OO

.O0000E*O0

.00000£*00
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JOE TITre: CORE RITE INSERT OEDER TEN_ION

LOAD CALCOLATIOM AT TIME • 1.000000

LOADS FOE R£OIOM aMRI

ELEMENT T

t0t .000000,00

102 .10000£÷03

105 .000000;00

104 -.996590302

1 .000000_00

201 .O0000E*O0

V

000000300

O0000E÷O0

000000*00

410420-01

000000300

000000*00

L_AO DALANCE .]40820*00 .4tO42E-Ot

OF POOR QUAL!IY

Z

.O0000E*O0

.O0000E)O0

.000000*00

-,221360-04

.000000_00

.000000÷00

-,221360-04

JOE TITLE: CnNE RITE INSERT ORDER TEMGIOH

INSERT ELEMENT _OLOTION AT TIME - 1.0000 FOR REOIOM • QMRI

ELEMENT NOON NO. I-TNAC. T T_AC. Z TNAC.

301

301

301

301

301

301

301

301

301

302

)02

502

3O2

302

302

302

302

302

303

303

303

503

303

303

)05

303

303

7300)

93001

91003

75002

03002

91002

73003

93005

93003

89_32E+00

128520*03

126070÷03

_222KE_00

1108BE*03

11989E)03

.29744E)00

.110740105

.IIN74E*O]

.10010_*0t

-,697040_01

-.73593£)01

.9627tE,01

-.28_4_E*03

-.20991E*01

.40005E*0)

-.171_7E*01

-.20014£*0t

-.45419['02

-,495400*02

-.50428E*02

-.108790302

-,77024E)01

-,03725E)01

-.74677E*01

-08_72E)01

-.02263[*01

75005

03005

9)003

_3004

9)0O4

93004

73005

83005

93005

• 297440+00 ,40065030!

.11974[)05 -.17167E*01

.11074E+03 -.20014E_01

.140920300 ,6480FE)0t

.117_60303 -,243060301

,117|_E303 -.28693E*01

,29706[*00 .4E0600*01

1)074[)03 *.17166Eo01

1187lE*03 -,20019E*01

-74677[.01

-.80572[*01

-,82263E*01

27T55E-03

22_00E*0J

3640_E-03

74674E)01

0R075E*01

022490*01

73005

83005

93005

73006

03006

9)006

73007

83007

93007

2970_E*00 .IBOKEE*OI

11_740*03 -,171_RE*01

I10740_03 -.20819_'01

724470*00 .9_2540_01

318680*03 -,2_5340301

11909_)03 -,2995_E*01

R_9060_00 .100290*01

120520*0] -69699[)01

126070*03 -.73594E*Of

74_74E*01

005750'01

02249E*01

100050*O2

770650*01

0301_E_01

49_27E*02

60416_302

JOB TITLe: rlIBE RITE INSERT OEDEB TEMSION

INTERIOR DISPLACEMENT AT TIME = 1.0000 FO_ PECIO:! - OHM1

HONE I DISFLACEHENT Y DISPLACEMENT Z DISPLACEMENT

?002 ,4755660)00 .105V77E*OO ,_36N08E'06

9001 ,17300)[*00 ,_2_41_E-01 .7659n00-9_

900_ .470777E*00 .3625_00--01 .9_o925£-06

9007 .46_954_*00 .1_1879E-01 .11420_E-05

9010 .4¢9622£_00 .K76120[-02 .1_5254E-05

JOE TITLE: cONE nITR IN_ERT ORDER TENSIOH

INTERIOR STRESS AT TIME = ),0000 FOR ENGINE - _MN1

NODE SIgMA-If _IGMA-YY SIOMA-ZZ TAP-_¥ TAO-IZ TAF-Y_

9002 .9970370_02 .419]11J_00 -.22250_E_0f -.0747760)0t -.627K$0E*01 -6vslgflE*01

9004 .1010930*03 .131_990*OO -.3434510+0! *.8325550_01 -1512052E*O1 -.624-66E*0!

9000 .1065410*03 .2940550-02 -,4220350_01 -,725001E)01 -.37565_E_01 -.$205200t01

9007 .11_6500*05 -,0407900-01 -,4519550_01 -.636016E+01 -.3_92520)01 -.4240)0E+01

9010 .11_245/_05 -.3516120_O0 ".4409K30*01 ".S$OISEE_01 -.3_32720_01 -.3563460_O1
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6. _ (_ (30MI_SI_E INSERT ANALYSIS

6.1 Introduction

In this section a number of examples are presented to verify and

demonstrate the applications of the ceramic composite formulation for

elastic fully-bonded inserts.

In the mesh diagrams of the models containing the inserts, a double

line is used to indicate the centerline of the insert elements. The length

of these segments are shown in proper proportion for the three-dimensional

views, however, the radii of the inserts are not indicated on these

diagrams. The double line is a symbolic representation of the insert

elements and does not in any way indicate the diameter of the insert.

Refer to the example description for the values of the radii.

Throughout this section consistent units are used in the definition of

the examples. This means all lengths are defined in the same units and the

tractions and the elastic moduli are defined in terms of these lengths as

Force/length 2. No confusion should arise since the results are reported as

non-dimensional quantities.

6.2 Cube With a Single L.sert

The first test of the formulation is on a unit cube with a single

insert through its center of radius 0.1. The cube is subjected to tension

and shear in the direction parallel and perpendicular to the insert. The

cube has a modulus of 100.0 and a Poisson ratio of 0.3. Consistent units

are used for all information described in this problem. An insert with two

different moduli of 1,000 and I0,000 is studied The Poisson ratio of the

insert is assumed to be the same as that of the cube.

The problem is analyzed by both the present formulation and by a full

three-dimensional multi-region BEM approach. As shown in Fig. 6.2.1, the

model for the insert formulation consists of fourteen quadratic boundary
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el_ments and the insert contains three quadratic insert elements. The two-

region, three-dimensional model shown in Fig. 6.2.2 contain twenty

quadratic boundary elements in the first region and sixteen in the second.

Note 9-noded elements are used in describing the insert and hole to

accurately capture the curvilinear geometry,

In Fig. 6.2.3, the profile of the end displacement of the cube under a

uniform normal traction of I00.0 (in parallel with the insert) is shown.

The present formulation is in good agreement with the full three-

dimensional results for Ei/E = 10. For the case Ei/E = 100, the insert

formulation exhibits greater stiffness than the 3-D results. This

difference is contributed by the way the load is distributed from the

insert to the composite matrix. In the full 3-D model, the applied

traction and the resulting reactions at the fixed end act directly on the

end of the insert, In the composite formulation, the insert is assumed not

to intersect the boundary surface and therefore the insert is moved back

slightly from the end of the cube. The load is therefore transferred

through the c_nposite matrix to the end of the insert and to its sides in a

manner that is slightly different from the full 3-D analysis.

In Fig. 6.2.4, the stress distribution through the center of the cube

(from A to B as indicated in the figure) is shown. Again the results are

very good for Ei/E = 10, and deviates slightly from the full 3-D results in

the second case.

In Figs 6.2.5 and 6.2.6, the lateral displacements along the side of

the cube are shown for a cube subjected to a shear traction of 100. For

the case of applied shear perpendicular to the insert (Fig. 6.2.5), the

results for both the insert and full 3-D model show good agreement. Once

again a slight deviation is observed for Ei/E = 100. In the case of the

shear traction in the plane of the insert (Fig, 6.2.6) the insert has
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little effect on the displacement (as anticipated) and all results fall in

close proximity.

6.3 IaMral Behavior of a Cube With l_Itiple Inserts

Existing methods of analysis of composite material based on mechanics

of materials have been relatively successful in predicting the behavior of

composite material for loading in the longitudinal direction. The

properties perpendicular to the direction of the fibers are not so readily

predictable by present means. The focus of the present example concerns

this lateral behavior.

Four cubes (Fig. 6.3.1) with one, two, five and nine inserts are fixed

with a roller boundary condition on one side and subjected to a uniform

traction, perpendicular to the inserts. The material properties, given in

consistent units, are

Einsert = 10000. Ematrix = 100.

insert = 0.3 matrix = 0.3

For the cube with one and two inserts, the boundary mesh consists of

two quadratic surface elements on each lateral side and four elements on

the top and bottom. For the cubes with five and nine inserts, one

additional element was added to the side with the applied traction and to

the side with the roller boundary condition. The top and bottom faces

contain six elements to match the pattern of the sides. In all cases, each

insert contained three one-dimensional quadratic elements.

The profile for the end displacement for a cube with one insert and

five inserts are shown in Figs. 6.3.2 and 6.3.3. The results seem to be in

good agreement with the two-dimensional results. The 2-D results are

approximations since plane stress is assumed. The 3-D solutions for the

47



one insert are within 2% error of the 2-D solution and within 3% for the

case of 5 inserts.

Also shown in Fig. 6.3.4 are the average end displacements for the

one, two, five and nine inserts. Results show good agreement with 2-D

results. For one, two and five inserts, the solutions are within 2% error

of the 2-D results and 6_ for the case of nine inserts where the insert of

volume to total volume ratio is 25.2% The result is also displayed in a

plot of Effective Modulus vs. Insert Volume Ratio in Fig. 6.2.5. The

effective modulus is defined as the average stress/average strain. The

three-dimensional results follow closely to the two-dimensional solution.

6.4 _/ck Cylinder With Circumferential Insert Supports

The strength of a cylinder under internal pressure can be increased by

adding stiff circumferential insert supports. In the present example, a

three-dimensional, open ended thick cylinder with four inserts is analyzeci

The inner and outer radii of the cylinder are 10 and 20 respectively, the

thickness is 2 and the radius of the fully-bonded inserts is 0.5. By using

roller boundary conditions on the faces of synmetry, only a fifteen degree

slice of the thick cylinder needs to be modeled. As shown in Fig. 6.4.1,

sixteen eight-noded quadratic boundary elements are used to define the

sides of the model, a nine-noded element is used on both the internal and

external faces of the cylinder, and three insert elements are used per

insert. Note, the inserts in this problem are curvilinear in geometry.

The elastic modulus of the cylinder is assumed to be 100, and the effect of

inserts with five different moduli of 100, 250, 500, 750 and 1000 is

studied. The Poisson ratio is 0.3 for both the composite matrix and insert,

and the internal pressure in the cylinder is I00.

Results from a multi-region, axisymmetric BEM analysis were used for

comparison with the 3-D insert results of the present example. The
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axis_tric model consists of twenty quadratic boundary elements on the

outer surface, and six boundary elements per hole and per insert (Fig.

6.4.2). The radial displacement through the thick cylinder along the top

face is shown in Fig. 6.4.3 for all five moduli. The displacement for the

composites with low Ei/E ratios are in good agreement with the axisymmetric

results, and diverge slightly for higher Ei/E ratios. In Fig. 6.4.4, the

circumferential stress is shown for the same points along the top edge.

This stress is smooth for the homogeneous case (Ei/E = 1.0) and exhibits

increasing fluctuations as the Ei/E ratio increases and the inserts take on

more of the loac% The circumferential stress of the 3-D insert model is in

good agreement with the axis_tric results for all cases. In Fig. 6.4.5,

the radial stress is displayed for the two models. The inserts have little

effect on this stress and the curves for the five moduli fall close

together for both approaches.

6.5 Cube With Multiple Inserts With Random Orien_tion

In an attempt to analyze a material with a random fiber structure,

cubes with multiple inserts oriented in random directions are studied. The

cubes are of unit length and have four boundary elements per side (Fig.

6.5.1a). Randomly oriented fibers of variable length with radii of 0.05

are placed in five cubes in quantities of 5, 10, 15, 20, and 25 (Fig.

6.5.1b-f). Three cases of material properties are considered for each

cube. The modulus of the composite matrix is 100 for all cases, however,

the modulus of the inserts are 500, 10,000 and 200,000 in the three cases

studied. Poisson's ratio is uniformly 0.3 throughout. Roller boundary

conditions are employed on three adjacent sides and a uniform normal

traction of 100 is applied to a fourth face.

The normal end displacement at the center of the face on the side with
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the applied traction is plotted against the number of inserts in a cube for

the three materials (Fig. 6.$.2). The displacement decreases with

increasing number of inserts per cube and increasing Ei/E values as

expected.

6.6 A Beam With Insert l_ei.forcement in Bending

In the last example, the applicability of the present formulation to

the study of the micromechanical behavior of the ceramic composite is

apparent. The present formulation, however, is equally applicable to

typical problems encountered by civil engineers. Using Composite-BEST

reinforced concrete can now be modeled exactly as a three-dimensional body

and studied in detail for the first time. The present example considers a

reinforced concrete beam. Here the concrete plays the role of the

composite matrix and the reinforcement bars play the role of the fiber

insert. In Fig. 6.6.1, a 4xlxl beam with four inserts is modeled using

twenty-eight quadratic boundary elements. The ratio of insert modulus to

matrix modulus (Ei/E) is studied for a range of valves between i and I00.

The Poisson ratio is 0.3 for both the beam and reinforced rods.

The beam is completely fixed at one end and a downward shear traction

of I00 is applied to the other end. The non-dimensional vertical

displacement of the end obtained from the analysis is shown in Fig. 6.6.2

as a function of Ei/F_ The non-dimensional displacement is defined here as

the end displac_nent of the reinforced bean divided by the displacement of

a homogeneous beam under similar eonditions.

The end displacerent obtained from the mechanics of material solution

is also displayed in Fig. 6.6.2 in non-dimensional form. The curvature of

the two plots are very similar but differ in magnitude. This difference is

contributed to the fact that although the mechanics of material solution

accounts for the stiffening due to the inserts, it does not include the
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effect of interaction between inserts.

6.7 Iaminated Fiber Composite

A laminated composite fabricated from a fiber composite mterial is

shown in Fig. 6.7.1. The fiber composite is constructed with a single row

of fully-bonded fibers oriented in the same directior_ A two-ply laminate

is then constructed from the fiber composite with the fibers of the two

layers oriented at 90° angles. A boundary element model created for the

study of this material is shown in Fig. 6.7.2. A small slice containing

two inserts in each layer is useci The model consists of two regions. The

outer surface of each region is modeled with sixteen quadratic boundary

elements and each insert contains two quadratic insert elements. The

interface between the two regions is assumed to be a perfect bond, however,

the present version of the program allows for sliding and spring

connections also.

The composite structure is subjected to bi-axial tension. This is

accomplished with normal tractions of 100 applied to two adjacent roller

boundary conditions applied to the opposite ends. The elastic modulus of

the composite matrix of both regions are assumed to be 100, and the moduli

of the inserts vary between I00 and 10,000. The Poisson ratio is 0.3 for

both the composite matrix and inserts at all times.

Figure 6.7.3 displays the displacement as a function of insert moduli

for a point on the interface at the corner of the plate adjacent to the

sides with the applied tractior_ The material exhibits less displacement

as the modulus is increased, as expected.
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Fig. 6.2.1 Discretization of an Insert in a Unit CubeUtilizing
Quadratic Insert Elements

Fig. 6.2.2 Full Three-dimensional, Multi-region Discretization
of an Insert in a Unit Cube
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7. S[]SMARXOF_ Aar__T

As is evident from the previous section, significant progress has been

made towards the goal of developing a general purpose boundary element

program for the micromechanical studies of advanced ceramic composites.

The formulation for elastostatic analysis of fully-bonded inserts has been

implemented and validation runs have been shown to correlate with results

obtained by full three-dimensional boundary element analyses. The

composite insert code development is based on the advanced boundary element

program BEST3D and all of its general purpose features have been retained

in the new code. These facilities which include definition of local

boundary conditions and multi-region substructurlng will allow real

problems encountered in industry to be analyzeci

Considerable effort has been focused in developing a formulation that

is not only accurate, but computer efficient. For instance, analytical

integration has been performed on the kernel function of the insert and

hole in order to expedite numerical integration. Also a new boundary

integral equation formulation was developed to both facilitate an efficient

assembly scheme for the inserts, and to reduce the number of unknowns in

the system and therefore render a smaller set of equations which is less

expensive to solve.

Overall the cost of the new composite insert analysis is just slightly

more expensive (for a moderate number of inserts) than the cost of

analyzing the natrix without the inserts present. The additional cost is

primarily attributed to the additional integration of the outer surface of

the matrix which is required for additional nodes on the insert's hole, and

towards the expense of solving a slightly larger syste_ In any case the

price is far less than the cost required for a full three-dimensional,

multi-region analysis of the same problem since in the 3-D approach more
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two-dimensional surfaces must be integrated and far more additional

equations (for the nodes describing the hole and the insert region) must be

integrated and added to the equation system. The data preparation for the

present method is far less involved than a full three-dimensional modeling

of the composite insert using the ordinary multi-reglon approach.

Furthermore, the code developed for the present work allows up to 500 (100

per GMR) insert elements in an analysis. An ordinary multi-region code

would require a 500 region capability in order to compete. In terms of

computer expense and the cost of data preparation for a 500 region probl_n,

such analyses would be impractical.

The work in this initial year has demonstrated the accuracy and

efficiency of the composite insert formulation applied to elastostatics.

The method is not only perhaps the best tool, but also may be the only

practical tool for the analysis of composite inserts in real problems

encountered in industry. The boundary element method already has been

proven successful in multi-region, transient and steady-state,

elastodynamic and heat conduction analysis. Coupled with the success of

the present work, the plan of this contract to extend the composite insert

formulation in these other areas holds great potential.

66



8. FUTUREDEV_

Significant progress has been achieved in the first year in

developing a user friendly, ceramic composite base program. The

infrastructure of the program is set up to facilitate future development.

Presently the elastoplastic analysis for fully-bonded composite inserts has

been implemented and tested. Delivery of the present code is planned for

March 1989.

The remaining work on the present contract consists of: extending the

formulation to steady-state and transient elastodynamic and heat transfer

analysis; developing sophisticated interface connections including failure

at the interface; and incorporating thermal and nonlinear material

phenomena in the probl_ The sequence for development of these tasks are

inconsequential since they are relatively independent of ore another. A

workplan for their development is presented below, however, communication

with interested parties at NASA will influence the exact order in which the

work will be performed.

The primary thrust for the upcoming year will be directed toward the

incorporation of more sophisticated interface conditions. Phenomena of

interest include imperfect bonding, progressive debonding, cracking of the

matrix, and controlled tension failure of the fibers. Initially this work

will be developed for elastostatics, and extended to the other analysis

types as they are developed.

Also during the next year. work will focus on the development of a

ceramic composite analysis capability for steady-state heat conduction and

the extension of thermal effects in elastostatics analysis. One-

dimensional representations of fully-bonded ceramic fibers will be

developed and incorporated into the code for heat conduction analysis,

however, the suitability of the one-dimensional functional approximations
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must be critically examined for geometrics and material properties typical

of ceramic composites. In particular, it may prove necessary to employ a

sine-cosine variation in the circumferential direction similar to the

elastostatic fomulatior_ Accuracy will be assessed via comparison with

full three-dimensional BEST3D analyses. During the development for steady-

state heat conduction and theiTnoelasticity, the thermal contact resistance

between the mtrix and insert interface will be addeci

Presently the insert fibers are entered in the data input of the

program as individual one-dimension line element with a prescribed radius.

This provided tr_nendous advantages over the full 3D approach in terms of

both modeling effort and computational efficiency. However, from a user's

standpoint, even the one-dimensional representation is cumbersome if each

fiber centerline must be defined. Clearly, a more convenient user

interface is needed in order to provide a practical tool for

micromechanical analyses of ceramic composites. Tnis interface has been

designed and will be impl_nented as part of the second year effort_ As a

result, the positioning of fibers will be determined internally by the

program within any generic modeling region based upon the specification of

a few keyword-driven parameters. With this approach, the user need only

define the outer surface of the body, as in any typical BEST3D model, along

with parameters specifying the overall fiber content, shape, size and

orientation. Finally, an updated version of the ceramic composite code

will then be made available at year end.

During the remaining three years, ceramic composite analysis

capability will be developed for transient heat conduction, steady-state

and transient elastodynamics, and material nonlinearities at high

temperatures. The primary task will involve the development of appropriate

representations for the inserts. Of course, now this task is much more
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difficult due to the complexity of the governing differential equations and

fundamental solutions. Additionally, investigations will be required to

determine appropriate nonlinear material models and solution algorithms for

the elevated temperature response of ceramic composites, and extensive

testing of all of the capabilities will be conducted. Specific priorities

for this advanced work will be established during 1989. Validation and

verification runs will be conducted regularly, so that reliability is

maintained throughout the duration of the five-year progra_ Once again,

at the end of each program year, the resulting general purpose

micromechanical ceramic composite code will be deliverable.

The final version, in particular, will provide a very precise, yet

very efficient, user-friendly, design and analysis tool for ceramic

composites exposed to severe operating environments. The resulting

computer code will enable an engineer to undertake rapid numerical

experiments to gain insight into the micromechanics of a particular

composite. Armed with this information, the disposition of fibers can be

selected to optimize performance under inelastic, thermal and dynamic

loading.
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LIST OF SYMBGLS

Ab,B b Boundary system matrices in assembled form

Cij (_)

Gij'Fij

NY(n)

A tensor dependent on location of the field point

Kernels of the displacement equation

One-dimensional shape function

M_(nl,_2) Two-dimensional shape function

ti Traction

ui Displacement

X Refers to global coordinates of an integration point

X System vector of unknown boundary quantities

Y System vector of known boundary quantities

z.. Strain
13

Refers to local coordinate of an integration point

Poisson's ratio

Refers to ooordinates of a field point

°ij

Sukscrtpt

Stress

Spatial derivative

i,j,k Indicial notation

i,j,k = 1,2,3
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